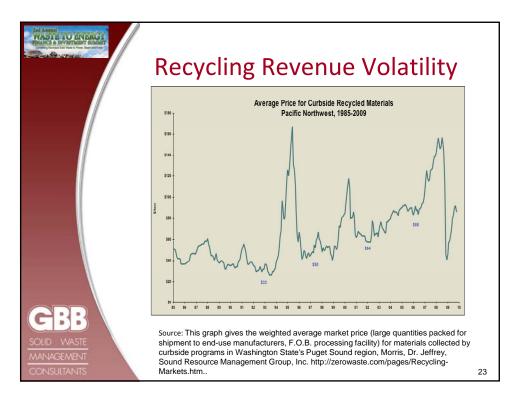
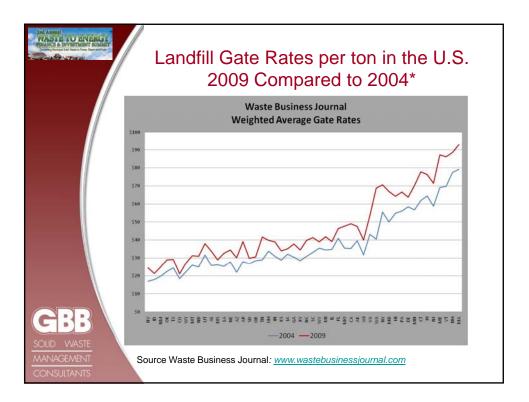

Progra	ams/Fac	ilities*	
Program/Facilities	2002	2004	2008
Curbside Program	8,875	7,689	* *
Yard Trim Facilities	3,227	3,474	* *
Landfills (MSW)	1,767	1,654	1,831
Waste-To-Energy	107	109	103
Landfills (C&D)	1,931	1,574	**
Transfer Station	3,895	3,744	**
*Source: <i>BioCycle</i> , State of Garba, ** Watch for publication in near WASTE WGEWENT		rs	







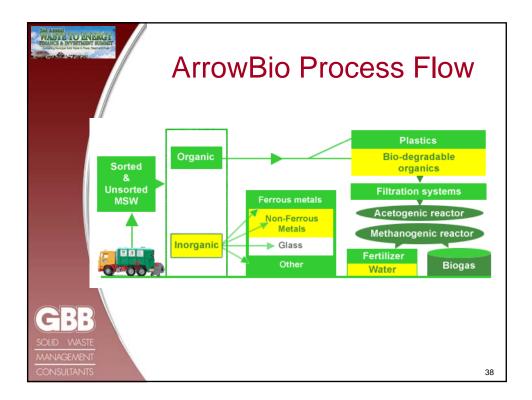


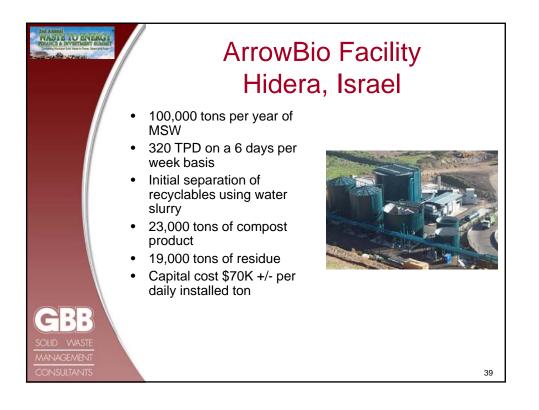
TANK AND A CONTRACTOR				echnology 700 MWs
	Technology	Operating Plants	Daily Design Capacity (TPD)	Annual Capacity ⁽¹⁾ (Million Tons)
	Mass Burn	64	71,354	22.1
	Modular	7	1,342	0.4
	RDF - Processing & Combustion	12	15,428	4.8
	RDF - Processing Only	2	6,075	1.9
	RDF – Coal Combustion	2	4,592	1.4
	Total U.S. Plants (2)	87	98,791	30.6
	WTE Facilities	83	92,716	28.7
CBB SOLID WASTE MANAGEMENT	 Annual Capacity equals (days/year) multiplied b typical system guarante Total Plants includes RE Source: IWSA (now Energy R 	by 85 percent. E be of annual fac DF Processing fa	ighty-five percent of lity throughput. acilities that do not g	the design capacity is a enerate power on site.
CONSULTANTS				28

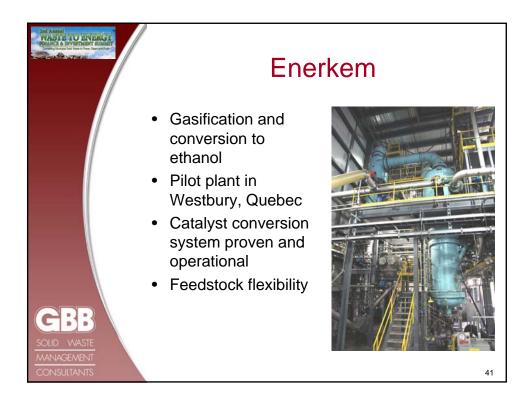
0	Tech	nnolo	gy
Company	Mass Burn		
Babcock & Wilcox	Х	Х	
Casella		Х	
Covanta	Х	Х	Х
Energy Answers*	Х	Х	Х
Foster Wheeler	Х		
Veolia*	Х	Х	
Wheelabrator (WMI)	Х		
Xcel Energy		Х	

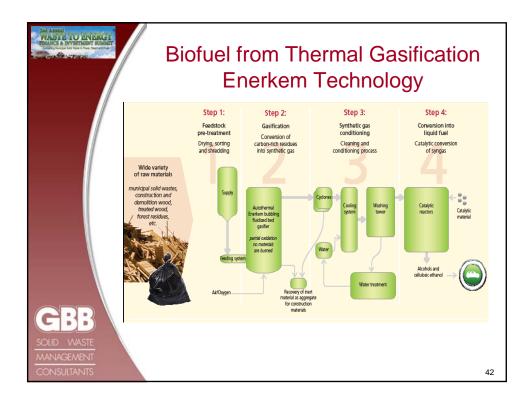
MADE IN EVIDENCE					op Thro RT Awa		
	Emission	WTE-A (mg/Nm³)	WTE-B (mg/Nm³)	WTE-C (mg/Nm ³)	Average of 10 Finalists (mg/Nm ³)	EU Standard (mg/Nm ³)	US EPA Standard (mg/Nm ³)
	Particulate matter (PM)	0.4	1.8	1	3.1	10	11
	Sulphur Dioxide (SO ²)	6.5	7.5	3	2.96	50	63
	Nitrogen oxides (NO ^x)	80	11	58	112	200	264
	Hydrogen chloride (HCI)	3.5	0.5	0.7	8.5	10	29
	Carbon Monoxide (CO)	15	7	15	24	50	45
	Mercury (Hg)	0.002	0.005	0.002	0.01	0.05	0.06
	Total Organic carbon (TOC)	0.5	NA	0.9	1.02	10	n/a
GBB	Dioxins (TEQ), ng/m ³	0.002	0.002	0.015	0.02	0.10	0.14
SOLID WASTE MANAGEMENT	Source: Them 2007.	elis, N.J. The	rmal Treatme	nt Review. W	aste Managem	ent World, July	/-August
CONSULTANTS							30

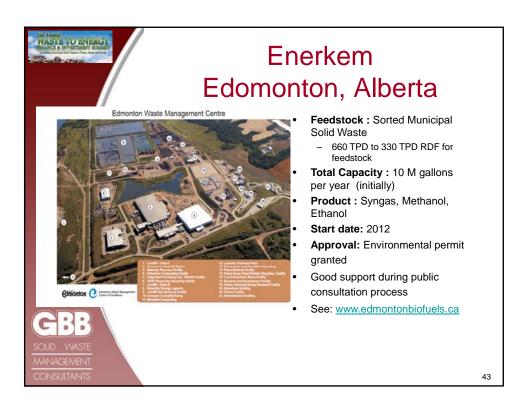
MANTE TO ENTRACT		oetwee	n Recy	odel Co cling R Waste	ates w	ith
	Baseline			GHG Emis O2E/day)		
	Description	Alternative	Baseline MSW Generation and Management	Alternative MSW Generation and Management	GHG Emission or Reduction Difference	Barrels of Oil Saved (bbls/day)
	Waste landfilled	20% Recycling	110	(310)*	(420)	523
	Waste landfilled	50% Recycling	110	(543)	(653)	907
	Waste landfilled	50% Recycling and Rest to Composting	110	(597)	(707)	904
GBB	waste landfilled	50% Recycling and Rest to Waste To Energy	110	(661)	(771)	1,047
SOLID WASTE MANAGEMENT	*Note: numb	ers in parenthe	esis are negativ	e showing redu	ictions in CO2 e	emissions.
CONSULTANTS						32

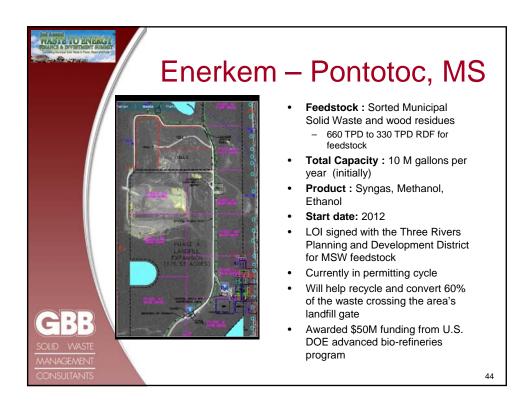

MASTE TO ENERG RAUT A IVENIAR CAR	S	Some	WTE	Cos	ts from Hawaii
	Location	MSW Capacity TPD	Capital Cost at Location (\$1,000)	Net Cost \$/ton	Source
	Hawaii County, HI	230	\$125.5 M	135	Big Island's Waste to Energy Plant Moves Forward, Advertiser Big Island Bureau, Kevin Dayton, April 2009
	Honolulu County, Hawaii	854	\$90.72	91	http://www.brighterenergy.org/3754/news/bi oenergy/302m-expansion-for-hawaii-energy- from-waste-plant/ And <u>http://www.covantaholding.com/site/news-</u> 2009/december-21, 2009
GRR	Maui County, HI	360	\$86 M	81	County of Maui, Integrated Solid Waste Management Plan, February, 2009, GBB
SOLID WASTE MANAGEMENT CONSULTANTS					33

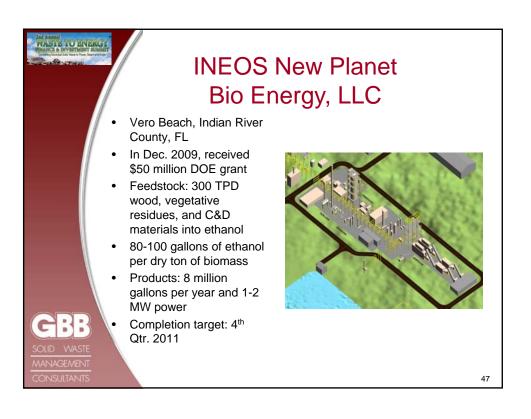



					\$564 million, December 2	
Company	DOE Gran	Fundi	ng Non-fed/Other	Location	Description	
Bluefire Ethanol	\$ 81,134	-		Fulton, MS	Facility will be constructed to produce ethanol from woody waste, mill residue.	
					and sorted municipal solid waste	
BioEnergy International	\$ 50,000	,000 \$	89,589,188	Lake Providence, L/	Process biologically produces succinic acid from sorghum, the process displaces petroleum	
Enerkem	\$ 50,000	,000 \$	90,470,217	Pontotoc, MS	the project will be sited on an existing landfill and use feedstock's such as woody blomass in a gasification and catalytic process	
INEOS New Planet BioEnergy	\$ 50,000	,000 \$	50,000,000	Vero Beach, FL	The facility will combine biomass gasification and fermentation to process wood, vegetative residues and construction and demolition material	
Sapphire Energy	\$ 50,000	,000 \$	85,064,206	Columbus, NM	The project will cultivate algae in ponds the will be converted into green fuels using the Dynamic Fuels refining process	
Algenol Biofuels	\$ 25,000	,000 \$	33,915,478	Freeport, TX	The project will make ethanol directly from carbon dioxide and seawater using algae	
American Process	\$ 17,944	,902 \$	10,148,508	Alpena, MI	The project will produce fuel and potassium acetate and the plant will have the capacity to produce up to 890,000 gallons of ethanol per year	
Amyris Biotechnologies	\$ 25,000	,000 \$	10,489,763	Emeryville, CA	The project will produce a diesel substitute through the fermentation of sweet sorghum and will have the capacity to co-produce lubricants, polymersand other petro-chemicals substitutes	
Archer Daniels Midland	\$ 24,834	,592 \$	10,946,609	Decatur, IL	the project will use acid to break down biomass which can be converted to liquid fuels or energy. The facility will produce ethanol and ethyl acrylate	
Clearfuels Technology	\$ 23,000	,000 \$	13,433,926	Comerce City, CO	The project will produce renewable diesel and jet fuel from woody biomass by ntegrating ClearFuel's and Rentech's conversion technologies	
Elevance Renewable Sciences	\$ 2,500,000	\$	625,000	Newton, IA	The project was selected to complete preliminary engineering design for a future facility producing jet fuel, renewable diesel substitutes, and high-value chemical from plant tolis and poultry fat	
Gas Technology Institut	e \$ 2,500,000	\$	625,000	Des Plaines, IL	The project was selected to complete preliminary engineering design for a novel process to produce green gasoline and diesel from woody biomass, agricultural residues. and aleae	
Haldor Topsoe	\$ 25,000	,000 \$	9,701,468	Des Plaines, IL	The project will convert wood to green gasoline by fully integrating and optimizing a multi-step gasification process	
ICM	\$ 25,000	,000 \$	6,268,136	St. Joseph, MO	The project will modify an existing corn-ethanol facility to produce cellulosic ethanol from switchgrass and energy sorgghum using biochemical processes	
Logos Technologies	\$ 20,445	,849 \$	5,113,962	Visalia, CA	The project will convert switchgrass and woody biomass into ethanol using a biochemical conversion process	
Renewable Energy Institute International	\$ 19,980	,930 \$	5,116,072	Toledo, OH	The project will produce high quality green diesel from agriculture and forest residue using advanced pyrolysis and steam reforming	
Solazyme	\$ 21,765	,738 \$	3,857,111	Riverside, CA	The project will produce algae oil that can be converted to oil-based fuels	
Honeywell's UOP	\$ 25,000	,000 \$	6,685,340	Kapolei, HI	The project will integrate existing technology from Ensyn and UOP to produce green gasoline, diesel, and jet fuel from agricultural residue, woody biomass, dedicated energy crops, and algae	
ZeaChem	\$ 25,000	,000 \$	625,000	Boardman, OR	The project will use purpose grown hybrid poplar trees to produce fuel-grade ethanol using hybrid technology	

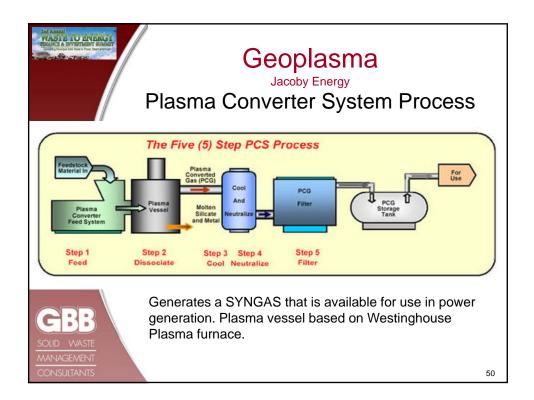

TANKA AND AND AND AND AND AND AND AND AND AN	Etha (Cents p			-		-	\$)
	Year	2008	2009	2010	2011	2012	2013
	Ethanol Wholesale Price	209.9	181.4	174.2	171.3	166.1	165.1
	Ethanol (E85) *	226.4	198.5	191.4	189.6	188.3	186.5
	Motor Gasoline **	227.3	217.3	209.2	204.7	201.1	195.2
SOLID WASTE	Source: U.S. DOE, EIA: htt *E85 refers to a blend of 85 gasoline (nonrenewable). T for this forecast. **Sales weighted-average p taxes.	percent o he annua	ethanol (re I average	enewable ethanol (e) and 15 content c	percent of 74 per	t motor cent is u

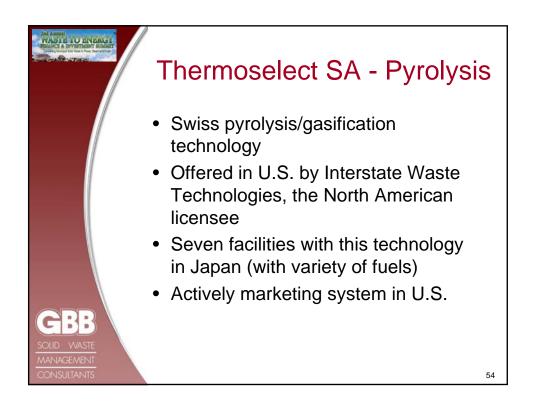


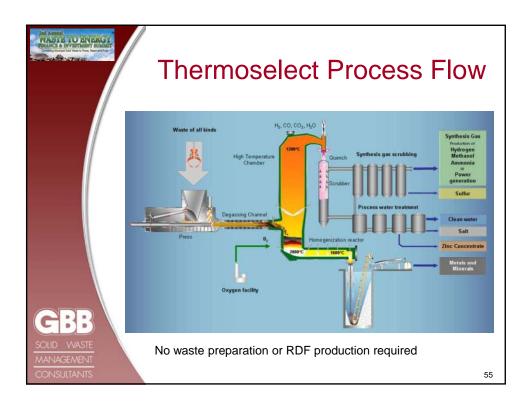


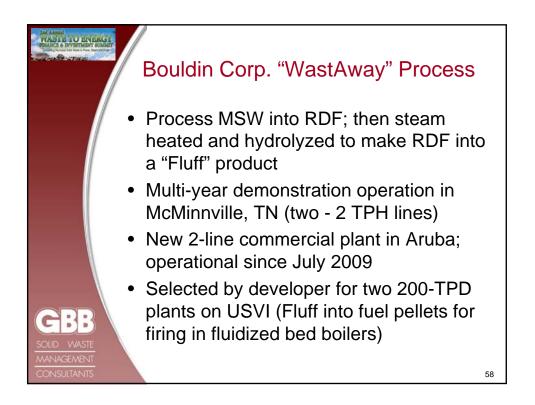


Gershman, Brickner & Bratton, Inc.

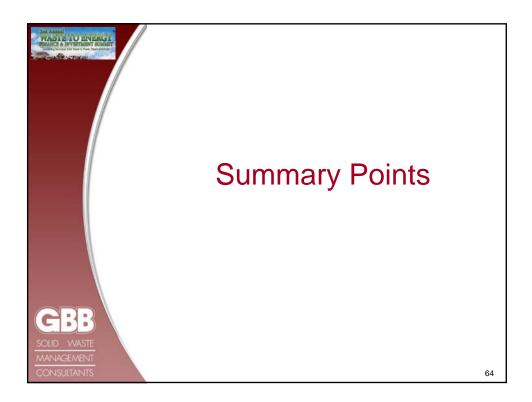


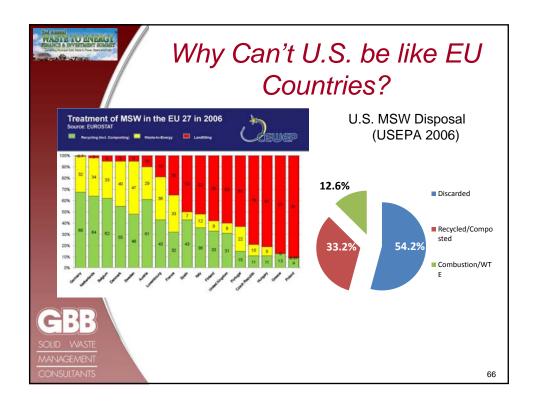











	/	Source: GBB, April 20	10
	Alternative	Risks/Liability	Risk Summary
	Mass Burn/WaterWall	Proven commercial technology	Very Low
	Mass Burn/Modular	Proven commercial technology	Low
	RDF/ Dedicated Boiler	Proven commercial technology	Low
	RDF/Fluid Bed	Proven technology; limited U.S commercial experience	Moderate
	Pyrolysis	Previous failures at scale, uncertain commercial potential; no operating experience with large scale operations	High
	Gasification	Limited operating experience at only small scale; subject to scale-up issues	High
	Anaerobic Digestion	Limited operating experience at small scale; subject to scale-up issues	High
BB	Mixed-Waste Composting	Previous large failures; No large-scale commercially viable plants in operation; subject to scale-up issues	Moderate to high
WASTE	Chemical Decomposition	Technology under development; not a commercial option at this time	High

