

Dump Background

- 43.5 acre unlined disposal facility
- Operated since World War II
- Ceased operations in 2011
- On the National Priorities list under CERCLA
- Guam is in US EPA Region 9
- Came under Federal Receivership

Existing Site Conditions

- Unlined dump with minimal cover soil
- Over steepened waste slopes (as steep as ½ (horz) to 1 (vert))
- Numerous leachate seeps
- Uncontrolled landfill gas migration
- Encroachment into wetlands

Detailed Site Investigation/Closure Design

- Site geologic/hydrogeologic evaluation
- Groundwater/landfill gas investigation and monitoring
- Waste limits evaluation
- Stormwater analyses
- Cover System Evaluation

Cover System Evaluation

Regulatory Overview:

- **Under Guam Environmental Protection** Agency oversight
- Adopted CFR Title 40, Part 258 Regulations
- Prescriptive final cover to provide a ≤ 1 x 10⁻⁵ cm/sec barrier layer

Factors Considered in the Evaluation

- Final waste limits
- Dump geometry/grading
- Stormwater control and management facilities
- Highest seismicity, (Zone 4) and high winds/precipitation (175 mph/95 inches/yr)
- Erosion
- Landfill gas and leachate generation
- Costs Long term maintenance

End-use goals

Cover Alternatives Evaluated

- Prescriptive soil cover system
- Exposed geomembrane system
- Covered Geomembrane system

Prescriptive Soil Cover System

From top to bottom:

- 6-inch-thick erosion layer,
- 18-inch-thick low permeability layer (k < 1.0 x 10⁻⁵ cm/sec),
- 12-inch-thick foundation layer

Exposed Geomembrane System

Layers from top to bottom:

- Side slopes: Geogrid to support vegetation (ie No Soil Cover)
- Geocomposite drainage/protection layer
- Geomembrane primary barrier layer
- Geocomposite landfill gas/leachate interception layer, and
- 12-inch-thick soil foundation layer

Additionally another exposed geomembrane system was evaluated but proved not sufficient to handle the design parameters for this severe environment

Covered Geomembrane System

From top to bottom:

- Top-deck:24-inch-thick erosion/protection layer (coralline sand/gravel)
- Side slopes: 6- to 8-inch thick erosion/protection layer (a geocell with coral sand/gravel infill)
- Geocomposite drainage/protection layer
- Geomembrane layer
- Geocomposite landfill gas/leachate interception layer
- 12-inch-thick soil foundation layer

EQUIVALENCY DEMONSTRATION HELP MODEL RESULTS					
Cover Percolation/Leakage Predictions (Inches/Yr.)					
Year 1	Year 2	Year 3	Year 4	Year 5	Average Annual
57.6	63.1	44.9	44.0	59.2	53.8
2.3	2.4	1.8	1.9	2.2	2.1
	Year 1 57.6	Year 1 Year 2 57.6 63.1	Year 1 Year 2 Year 3 57.6 63.1 44.9	Year 1 Year 2 Year 3 Year 4 57.6 63.1 44.9 44.0	Cover Percolation/Leakage Predictions (Inc. Year 1 Year 2 Year 3 Year 4 Year 5 57.6 63.1 44.9 44.0 59.2

Selected Cover

Covered geomembrane with geocell and soil infill

- Superior leakage protection versus prescriptive cover
- Superior erosion protection versus prescriptive cover
- Superior wind/puncture resistance versus exposed cover
- Lower long term maintenance versus other cover options

However, it required re-grading of existing waste slopes

Geocell design parameters

- 8-inch thick geocell used on upper slopes for wind uplift
- 6-inch thick geocell used on lower slopes
- Kevalar® tendons used for stability on slopes steeper than 2.5 (horz) to 1 (vert)
- Polyester tendons used on slopes flatter than 2.5 to 1
- Concrete filled geocell used in stormwater collection channels for differential settlement

Geocell layer construction aspects

- Installation starts at each bench
- A 2-inch schedule 80 PVC pipe is used to anchor tendons
- · Geocell is deployed and soil infilled along with first few rows of cells filled with concrete as anchor for geocell deployment downslope
- Geocell panels with tendons weaved through each panel and panels side by side stapled together with stainless steel staples.
- Installed downslope to next bench
- At each toe of slope, the terminal edge of geocell panels is concrete filled just above the stormwater channel completing the system.

Benefits of using Geocell in Final Cover

- Enhanced erosion control
- Steeper waste slopes acceptable to EPA
- Use of tendons enhance veneer stability
- Protection of geomembrane from wind uplift/damage
- High tolerance to differential settlement
- Ability to mitigate high precipitation/pore pressure build-up in cover soil

Geocell Cost (2013)

• Geocell Panels (per acre supplied installed (41 acres))

8 inch (26 acres) \$ 75,0006 inch (15 acres) \$ 64,000

• Tendons (per acre supplied installed)

Kevlar (40%) \$ 16,300Polyester (60%) \$ 4,400

• Infill (per acre supplied Installed)

Soil/Gravel \$ 24,000
 Concrete \$ 44,000

Geocell Installed per acre: \$175,000 (approx.)

 Upper Geocomposite/ Geomembrane (48 acres)

(per acre supplied Installed): \$100,000

Total \$275,000/ac

Geocell construction difficulties/lessons learned

- Placing cell infill on long slopes
- Anchoring geocell on downslope ridge points
- Width of access benches made installation more difficult
- Forming geocell at toe of benches to construct concrete filled stormwater channels
- Overfill of cells with concrete

